

Technical Information

MOF Medium (Marine Oxidation Fermentation Medium)

Product Code: DM 1379

Application: - MOF Medium (Marine Oxidation Fermentation Medium) is used for the differentiation of marine bacteria on the basis of oxidative and fermentative metabolism of carbohydrate.

Composition**

Composition						
Ingredients	Gms / Litre					
Casein enzymic hydrolysate	1.000					
Yeast extract	0.100					
Tris hydroxymethyl aminomethane	0.500					
Boric acid	0.011					
Ammonium sulphate	0.500					
Disodium phosphate	0.004					
Ammonium nitrate	0.0008					
Sodium chloride	9.700					
Magnesium chloride	4.400					
Sodium sulphate	1.600					
Calcium chloride	0.900					
Potassium chloride	0.275					
Sodium bicarbonate	0.080					
Potassium bromide	0.040					
Strontium chloride	0.017					
Sodium silicate	0.002					
Sodium fluoride	0.0012					
Phenol red	0.010					
Agar	3.000					
Final pH (25°C)	8.0±0.2					
**Formula adjusted, standardized to suit performance parameters						

Principle & Interpretation

MOF medium is a modified version of the formula originally developed by Leifson (1); used for differentiating oxidative and fermentative carbohydrate metabolizing marine bacteria. The marine environment of the oceans illustrates a different view of microbial populations in water. In the high salt concentration of ocean water, halophillic or salt- loving microorganisms survive. In addition, the organisms must be psychrophilic since it is very cold below the surface. Those at bottom must also withstand great pressure and are therefore barophilic or pressure loving (2).

Casein enzymic hydrolysate and yeast extract in the medium supply the necessary nitrogenous nutrients including amino acids, vitamins etc. The mineral content of this medium is equivalent to one-half that of seawater $^{(1)}$. It contains a variety of salts found in seawater, which not only makes the medium suitable for marine bacteria but also buffers the medium. Phenol red is the pH indicator in the medium.

For differentiating the fermentation and oxidation of carbohydrates, inoculate two tubes of medium containing carbohydrate with each culture to be tested. Cover one medium tube of each culture with sterile melted petrolatum to form a layer of about one inch in height.

Carbohydrate -fermenting marine bacteria change the colour of the medium in both the tubes (covered and uncovered) from red to yellow whereas carbohydrate-oxidizing marine bacteria change the colour of the medium from red to yellow only in the uncovered (open) tube. Marine bacteria that are neither oxidative nor fermentation do not exhibit any change in the covered medium and exhibit an alkaline (red to deep pink) reaction in the uncovered medium. Gas production is detected as splitting or displacement of agar or formation of small bubbles. Motile organisms form a diffuse zone of growth originating from the line of inoculation. Non-motile organisms grow along the line of inoculation.

Methodology

Suspend 22.14 grams of powder media in 1000 ml distilled water. Shake well & heat to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Cool to 55-60°C and aseptically add sterile dextrose solution (or other carbohydrate of choice) to a final concentration of 1%. Mix well and dispense into sterile test tubes.

Quality Control

Physical Appearance

Light yellow to pinkish purple homogeneous free flowing powder

Gelling

Semisolid, comparable with 0.3% Agar gel.

Colour and Clarity of prepared medium

Red coloured clear to slightly opalescent gel forms in tubes as butts

Reaction

Reaction of 2.2% w/v agueous solution at 25°C. pH: 8.0±0.2

pH range 7.80.-8.20

Cultural Response/ characteristices

DM 1379: Cultural characteristics observed after an incubation at 35-37°C for 18-24 hours.

Organism	Inoculum (CFU)	Growth	Motility	Acid	Gas
Vibrio cholerae ATCC 15748	50-100	luxuriant	positive, growth away from stabline causing turbidity	positive reaction, yellow colour	positive reaction
Vibrio parahaemolyticus ATCC 17802	50-100	luxuriant	negative, growth along the stabline, surrounding medium remains clear	negative reaction	negative reaction

Storage and Shelf Life

Dried Media: Store below 30°C in tightly closed container and use before expiry date as mentioned on the label.

Prepared Media: 2-8° in sealable plastic bags for 2-5 days.

Further Reading

1. Leifson E., 1963, J. Bacteriol., 85:1183.

2. Alcamo E. I., 2001, Fundamentals of Microbiology, 6th Ed., Jones and Bartlett Publishers.

Disclaimer:

- User must ensure suitability of the product(s) in their application prior to use.
- The product conform solely to the technical information provided in this booklet and to the best of knowledge research and development work carried at **CDH** is true and accurate
- Central Drug House Pvt. Ltd. reserves the right to make changes to specifications and information related to the products at any time.
- Products are not intended for human or animal diagnostic or therapeutic use but for laboratory, research or further manufacturing of diagnostic reagents extra.
- Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for
 infringement of any patents.
- Do not use the products if it fails to meet specifications for identity and performens parameters.

